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The usual procedure that the transport properties at atmospheric pressure are 
identified with values in the limit of zero density cannot be accepted for all 
reduced temperatures T*. It is shown in the framework of the Rainwater-Friend 
theory for noble gases, as a good example, that for T* < 1 the effect of the initial 
density dependence has different signs for viscosity and thermal conductivity 
and amounts to a few percent, when data at atmospheric pressure are compared 
with zero-density values. An improved representation of the monomer-direct 
contribution to the second transport virial coefficients of the Rainwater-Friend 
theory is presented in the paper. This is based, among others, on the author's 
own experimental data of the initial density dependence of viscosity of 
polytomic gases. 

KEY WORDS: noble gases; second transport virial coefficients; thermal 
conductivity; viscosity. 

1. I N T R O D U C T I O N  

M o d e r n  c o r r e l a t i o n  a n d  p r e d i c t i o n  schemes  for t r a n s p o r t  p rope r t i e s  a re  

of ten  based  on  the  e x t e n d e d  t h e o r e m  of  c o r r e s p o n d i n g  states,  wh ich  is 

f o u n d  to be va l id  for  spher ica l ly  s y m m e t r i c  pa i r  po ten t i a l s  b e t w e e n  

s t ruc ture less  par t ic les ,  whe re  the  p o t e n t i a l  has  a un iversa l  r educed  f o r m  

U(r/~) - -  - u*(r*) (1) 

F o r  m o n a t o m i c  gases  a t w o - p a r a m e t e r  l aw of  c o r r e s p o n d i n g  states,  cha rac -  

te r ized  by ene rgy  and  d i s t ance  sca l ing  p a r a m e t e r s  e and  a, has  been  found  
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very useful for the zero-density properties [1, 2]. But it has been shown 
that for reduced temperatures T*< 1.2 and T*> 10, an extension is 
necessary even for noble gases, because their pair potentials are not exactly 
conformal [3, 4], and that in the case of polyatomic gases the inelasticity 
of intermolecular collisions has to be taken into account [2,5]. 
Nevertheless, a two-parameter law of corresponding states is a reasonable 
and useful basis for the purpose of correlating and extending data beyond 
the temperature range of direct measurements. Since values at zero density 
are not accessible to direct measurements, values at relatively low densities 
are often identified with zero-density data in practice. Here it is assumed 
that the influence of the initial density dependence of transport properties 
is small and negligible in comparison with the uncertainties associated with 
the high-precision experimental methods under discussion. In principle, 
such a procedure cannot be accepted because the initial density dependence 
must surely affect the low-density values. 

The transport properties of moderately dense gases may be represented 
at temperature T and density p by expressions of the form 

#=~o(T)+#l(T)p+ . . . .  #0(T)[1 +B~,(T)p+ --.] (2) 

where # is either the viscosity t/or the thermal conductivity 2,/~o represents 
the zero-density transport properties, and #1 the initial-density slope of the 
respective transport property. As a consequence of the collisional process 
between pairs of monomers, the density series of transport properties starts 
with its value in the zero-density limit, which is considered in the kinetic 
theory of dilute gases [2, 6]. But collisional processes between two 
monomers also contribute to the linear-in-density correction #1 through 
collisional transfer. Furthermore, collisions among three monomers and 
between a monomer and a dimer also contribute to this density correction. 

Rainwater and Friend [7 9] have proposed a microscopically based 
theoretical model for the classical second transport virial coefficients B~ 
and presented numerical results for the Lennard Jones 12-6 potential. In 
this paper, we present an improved representation of the monomer~timer 
contribution to B~ and include our own experimental results for B, of 
polyatomic molecules as well as new experimental values from the 
literature for B;. of monatomic gases. Using this result, we also explore the 
influence of the initial density dependence on the low-density transport 
coefficients, espectially for noble gases at low redcuced temperatures and at 
atmospheric pressure. 
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2. THE MONOMER-DIMER CONTRIBUTION TO THE SECOND 
TRANSPORT VIRIAL COEFFICIENTS 

The second transport virial coefficients are subdivided as follows: 

(M D) B,u: B~2).-~- B(3)-.I- B,u (3) 

The superscripts refer to the three already mentioned contributions to the 
initial density dependence of transport properties. Starting with the basic 
premise that moderately dense gases can be modeled as a mixture of 
monomers and dimers, Rainwater and Friend [7 9] have published an 
exact calculation of the collisional transfer contribution of two monomers 
B(~ 2) by limiting the integration to the free portion of the relative phase 
space. According to an approximation proposed by Enskog [10] and 
applied by Hoffman and Curtiss [11 ], Rainwater and Friend [9, 12] have 
also computed the integrals of the three-monomer contribution B(~ 3). 

The treatment of the monomer-dimer contribution has been carried 
out according to the theory of Stogryn and Hirschfelder [13] via the first 
approximation for the transport properties of a dilute binary gas mixture 
[2, 6] consisting of monomers and dimers which are truly (b) and 
metastably (m) bound. It is assumed that the interaction potential between 
the monomer and the dimer is known and is of the same form as the 
monomer-monomer potential and characterized by the potential parameter 
ratios 

fi----aM D/aM (4) 
0 = eM-- D/eM (5) 

The collision diameter a and the well depth e are used for reducing the 
temperature, the second pressure virial coeff• and the second 
transport virial coefficients: 

T* = kT/e  (6) 

B* = B/(2/ro "3) (7) 

B *  = B . / ~  ~ (8) 

On the condition that the proportion of dimers is small in comparison with 
that of the monomers in the mixture, the mole fraction of the dimers XD is 
related to the equilibrium constant for the formation of dimers and their 
contribution to the second pressure virial coefficient as 

XD ~ Kp = --(B z + B Z ) p  (9) 
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The superscript Z corresponds to the conventional subdivision of B due to 
Stogryn and Hirschfelder [14]. 

After expanding in powers of XD, the viscosity of the mixture is given 
by 

?~=/~M"~ 2 + 1 0 +  3A* D \  2t/M 3A~--Dr/M--D F/MXD- }- ... 

(10) 

qM is the viscosity coefficient of the monomer and is equal to that in the 
zero-density limit t/0 , whereas the interaction viscosity t/M D and the colli- 
sion integral ratios A* D and B *  D (see below) can be expressed by 
means of 6 and 0: 

/TM 31/2~ 2~(2"2)*(0 ~T*) 
(11) 

~=F]M D 2f2(2'2)*(T*) 

g'~(2,2)* (0-1 T* ) 
A ~ _ D ( O - 1 T  * ) - -  ~..~(1, i),  (0_ 1T, )  (12) 

5O~  (13) 
B~a r)(O-~T*) - (2~ ~T*) 

Thus, the monomer-dimer contribution is represented for the viscosity as 

B~M-D), = _ 2/3~(BZ, + BZ,)(1 + 0.3A~_D)-I 

x[2(1--~)+0.3A* D(4.5~ ~--4)] (14) 

In this paper we restrict our consideration of the thermal conductivity 
to monatomic gases. In the case of polyatomic gases, complications occur 
because of the sensitivity of this property to the anisotropy of the inter- 
molecular potential and because of the existence of internal degrees of 
freedom and their interaction with the translational degrees of freedom 
(inelastic collisions). Suitable expressions have been developed for the ther- 
mal conductivity of dilute polyatomic gases by Mason, Monchick, and co- 
workers [-15-17]. They include all of the information about the binary 
molecular interaction and account for internal contributions, internal 
energy relaxation, and spin polarization effects. Nevertheless, there are still 
problems in the accurate representation of the thermal conductivity of 
dilute gases, i.e., in the limit of zero density, which were discussed in terms 
of a theoretically based data assessment by Millat et al. [ 18 ]. Furthermore, 
up to now there exists no theory for the second virial coefficient B;. for the 
thermal conductivity of polyatomic gases which suitably takes into con- 
sideration the effects mentioned above. 
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For a mixture of monomers and dimers the thermal conductivity can 
be given by a term according to the Chapman-Enskog theory for 
monatomic molecules together with another, which accounts for the effect 
that the molecular association is a chemical reaction, and, furthermore, 
with a Eucken-type correction term, which takes into consideration that 
the dimer is a quasi-polyatomic molecule. Two parts of the above terms 
cancel out, so that after expanding in powers of XD the following equation 
is obtained: 

2 = 2 M + 2  1 2 ~ + A * _ D \  102M 1-5 + ~ - - - - ~ + 1 2 )  

( ) ( 3 2M B* D -- ]'~ 2M 1 + 1 6 A * ~  ~ 
X ~ - - - D  D ~'M -- D 

[ 4  1 / B * _ D  1"~ 1] -1 
x I + ~ A *  D - - ~ - - - - ~ + ] - ~ ) + ~  )oMXD 

T2 d2(BZ"~ BZm) ~-~ XD-}- ... (15) 
+ pRDM o BZ + BZ dT 2 

Here, 2M is the thermal conductivity of a monatomic monomer and, of 
course, equal to that in the zero-density limit 2o- DM is the self-diffusion 
coefficient. The interaction thermal conductivity 2M-D and the binary dif- 
fusion coefficient DM D can again be formulated by means of 6 and 0, 

3 )~M 3 D M A~ D 
- (16) 

4"~M-D 4DM D A* 

With Eq. (15) and the following general relation of the Chapman-Enskog 
theory between thermal conducitivity and diffusion coefficient, 

pRD = 8/25A'2 (17) 

the monomer-dimer contribution for the thermal conductivity is given by 

B (M D ) * =  - -57~(Bb §  ) 

•  �9 A _o ' 

6 ~ V _T .2 d2(B z* + a m ) 
z ,  - z ,  + 18) +z~ A---~162 L(eu § ) dr2 
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Various methods have been used for estimating the parameters 6 and 
0. First, Stogryn and Hirschfelder [13] have calculated 6 and 0 by angular 
averaging for the Lennard-Jones i2-6 potential. Friend and Rainwater [81 
have recommended as a better procedure to optimize 6 and 0 by fitting the 
theoretical expressions to experimental data for both second transport 
virial coefficients because of the uncertainty and complexity of the 
monomer~limer collision process. 

3. PROBLEMS AND RESULTS OF THE O P T I M I Z A T I O N  OF 6 
AND 0 

(2), and (3)* for the Making use of their theoretical results of Bu B~ 
Lennard-Jones 12-6 potential as well as of the formulae of R (M-D)* 
Friend and Rainwater [8]  have determined the parameter ratios for the 
Lennard-Jones 12-6 potential, of course, to be 

6 = 1.02 and 0 = 1.15 

For this purpose they have used the experimental material summarized in 
1969 by Hanley et al. [19] for the viscosity of the noble gases, nitrogen 
and hydrogen, and for the thermal conductivity of the noble gases. In addi- 
tion, they have included some more recent data for the thermal conduc- 
tivity of the noble gases. Their results for the whole reduced second trans- 
port virial coefficients B* are shown as curves in Figs. 1 and 2. We should 
like to point out that B* is most sensitive to temperature in the reduced 
temperature range T * < 2  and, especially, for T * <  1. In this range the 
largest differences between transport properties in the limit of zero density 
and data at atmospheric pressure are also to be expected. As the 
experimental material reviewed by Hanley et al. [19] is situated in the 
range T * >  1, the behavior in the range T * <  1 can be described by 
means of the monomer-dimer contribution of Rainwater and Friend only 
approximately. 

Most problems connected with the optimization of 6 and 0 have 
already been discussed by Rainwater and Friend [-9]. Nevertheless, we try 
to stress some special features from an experimentalist's point of view. The 
choice of common parameter ratios 6 and 0 by means of experimental data 
of different species implies that the procedure is based on the theorem of 
corresponding states. There is a further limitation in using the Lennard-  
Jones 12-6 potential. It is well-known that the Lennard-Jones 12-6 poten- 
tial is unsuitable even for the noble gases and that potentials of the H F D  
type are able to represent simultaneously all macroscopic and microscopic 
properties of monatomie gases in an excellent manner [-20-23]. 
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Fig. 1. Reduced second viscosity virial coefficient as a func- 
tion of the reduced temperature for the Lennard-Jones 12-6 
potential. Experimental data: 0 ,  helium [30, 31]; II, neon 
[3~34];  # ,  argon [30, 31]; A, krypton [35, 36]; It, xenon 
[36]; O, nitrogen [30, 31]; •, carbon dioxide [37, 38]; O, 
ethane [38]; A, ethene [39]; tD, sulfur hexafluoride [26]; [], 
neopentane [27]; r n-hexane [28]; ~,  cyclohexane [27]; 
~7, benzene [29]. Curves according to the Rainwater-Friend 
theory: (1) 6=1.02, 0=1.15 [8]; (2) 6=1.04, 0=1.25 (this 
work ). 

840/12/1-3 
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The temperature range from which zero-density viscosity coefficients 
are chosen in order to determine a and e of the m o n o m e r  for the L e n n a r d -  
Jones 12-6 potential is of essential importance. To give an example we 
have determined a and e from values calculated according to the H F D  
potential and found for argon:  

87.28 <~ T~< 5000, 

87.28 ~< T~< 1250, 

87.28 ~< T<~ 270, 

=- 0.3227 nm, 

o- = 0.3312 nm, 

~r = 0.3418 nm, 

~/k = 176.3 K 

~/k = 147.4 K 

e/k = 125.4 K 
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Fig. 2. Reduced second thermal conductivity virial coef- 
ficient as a function of the reduced temperature for the 
Le.nnard-Jones 12-6 potential. Experimental data: O, 
helium [40-42]; ~,  helium [43]; ~), helium [44]; II, 
neon 1,40, 45]; ~ ,  argon 1,40, 46-49]; ~,  argon [50]; ,t, 
krypton 1-40, 51]; A, krypton [50]; T, xenon 1,-40, 51]; 
~7, xenon [50]. Curves according to the Rainwater-Friend 
theory: (1) 6= 1.02, 0=1.15 [8]; (2) 6=1.04, 0=1.25 
(this work). 
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where T is in K. The temperature range starts with the normal boiling 
point in each case because of the sensitivity for T* < 1. The representation 
of the zero-density viscosity coefficients with the Lennard-Jones 12-6 
potential is not sufficient, although it has been improved with decreasing 
temperature range. The largest deviation at 87.28 K has decreased from 8 
to 2%. Furthermore, the values show the well-known fact that a and e 
cannot be determined independently and that the choice of the parameter 
set o, e is quite arbitrary. Therefore, we have decided to reduce the 
experimental second transport virial coefficients for the rare gases and 
nitrogen by means of the same parameters as Rainwater and Friend have 
done, i.e., the parameters of Hanley et al. [19], which are shown in Table I. 
The values of o and e for further substances discussed below are also listed 
in Table I with corresponding references. 

In order to get reliable experimental second transport virial coef- 
ficients, one needs a sufficient number of low-density points along 
isotherms to resolve both slope #1 and zero-density limit /to. The single 
experimental points should have accuracies possibly better than 0.2 % for 
viscosity and 0.5% for thermal conductivity. The range of reduced 
temperatures in which investigations can be done is of importance. 
Measurements are needed for the rare gases in temperature ranges in which 
the most reliable experimental techniques have not been applied up to 
now (He, T < l l K ;  Ne, T < 4 2 K ;  Ar, T < 1 4 3 K ;  Kr, T < 2 0 1 K ;  Xe, 

Table I. Lennard-Jones 12-6 Potential Parameters 

Gas Collision diameter Well depth Ref. 
o e/k No. 

(nm) (K) 

Helium 0.263 10.0 19 
Neon 0.272 47.0 19 
Argon 0.341 125.0 19 
Krypton 0.362 183.0 19 
Xenon 0.396 250.0 19 
Nitrogen 0.368 90.9 19 
Carbon dioxide 0.3753 246.1 24 
Ethane 0.4407 227.9 25 
Ethene 0.4155 225.6 25 
Sulfur hexafluoride 0.5205 215.0 26 
Neopentane 0.6160 262.5 26 
n-Hexane 0.6136 387.8 28 
Cyclohexane 0.6267 289.4 This work 
Benzene 0.5379 411.5 This work 
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T <  282 K). The reduced temperature range of T* < 1 under discussion is 
simpler to attain for polyatomic species, for which, on the one hand, the 
Lennard-Jones 12-6 potential is even less suitable and, on the other hand, 
the thermal conductivity is complicated by the effects mentioned above. 
Our original contributions in this field consist in very accurate viscosity 
measurements on polyatomic gases and vapors in order to determine B, for 
0.8 < T * <  3. Results for the following substances are included in the 
present paper; sulfur hexafluoride [26], neopentane [27], n-hexane [28], 
cyclohexane [27], and benzene [29]. The Lennard-Jones 12-6 parameters 
of these substances determined by means of the zero-density viscosity data 
in Refs. 26-29 are given in Table I, too. 

The experimental material used in this paper for the choice of 
optimized parameter ratios 6 and 0 has been selected with regard to the 
following considerations. In the insensitive temperature range the 
experimental data should have been obtained as results of measurements 
made with an apparatus of high precision. This means recent measurements 
with the transient hot-wire technique for thermal conductivity and with 
oscillating-disk or capillary viscometers for viscosity. In the case of thermal 
conductivity we have dealt only with monatomic gases. For viscosity, in 
addition to monatomic gases, results for polyatomic gases investigated in 
our laboratory as well as such from literature for simpler molecules, such 
as nitrogen, carbon dioxide, ethane, and ethene, have been included. If 
several series of measurements are available from one laboratory for 
approximately the same temperature range, we have chosen the more 
recent one. The references are reproduced in the legends to Figs. 1 and 2. 

Figure 1 shows a comparison of experimental data with the reduced 
second viscosity virial coefficient B* according to the results of Rainwater 
and Friend [9]  (curve 1). Although this curve agrees quite well with data 
for the monatomic gases, there is a certain difference with the latest data 
for helium and argon [30], neon [343, and krypton [35], marked with an 
arrow. These data are lower than the results of Rainwater and Friend. 
Similar deviations are also found for recent data on the polyatomic gases 
nitrogen [30],  carbon dioxide [37, 38], and ethane [383, marked with an 
arrow, too. Our data for the above-mentioned polyatomic gases also 
remarkably deviate from curve 1. Even if the Lennard-Jones 12-6 potential 
is inadequate for these polyatomic gases and the parameters ~r and e are 
arbitrarily determined, there seems to exist a tendency that a better 
representation of B* or, more exactly, of B~ M- m .  is necessary in order to 
describe the data for all monatomic and polyatomic gases. From Fig. 2 for 
the reduced second thermal conductivity virial coefficient B*, it becomes 
immediately obvious that all transient hot-wire data (filled symbols), apart 
from helium and neon, are lower than curve 1 due to Rainwater and 
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Friend. The results for both second transport virial coefficients show that 
the values of 6 and 0 have to be increased in order to improve the 
agreement. Thus, to arrive at a compromise we have chosen 

= 1.04 and 0 = 1.25 

in the course of this work. The experimental B* data for the heavier noble 
gases are still lower than curve 2, whereas the B* data for benzene and 
n-hexane are in close agreement with the corresponding curve 2 apart from 
some values at the highest temperature as a consequence of the increasing 
experimental uncertainty. 

From Figs. 1 and 2, it emerges clearly that there is a need for 
experimental data in the range of T* < 1 for all five noble gases. Therefore, 
we have looked for further data even if they are of a lower quality. For  
viscosity B* data are missing for all five noble gases in this range. The B~ 
values for the heavier noble gases by Keyes [-50] seem to be in relatively 
close agreement with the results of Rainwater and Friend. But their uncer- 
tainty is very large so that they have failed to be accepted for the data 
collection of Hanley et al. [19]. In spite of the shortage of accurate data 
for both transport virial coefficients in the range T * <  1, we are of the 
opinion that the Rainwater-Friend theory together with the new parameter 
ratios of 6 and 0 can be used for predictions of the classical behavior of the 
initial density dependence of transport properties, i.e., for the heavier noble 
gases. 

In the case of helium and neon the situation is complicated because of 
quantum-mechanical effects, whose magnitude is very difficult to estimate. 
For neon it should be admissible to accept the classically calculated values 
because of the experimental uncertainty of B*. Some further remarks 
are necessary for helium. At low temperatures a quantum-mechanical 
monomer-dimer contribution B~ M-m* should be very small owing to the 
small percentage of dimers [20]. According to our knowledge corre- 
sponding calculations of B(~ 2~* and B(~ 3)* have not been carried out. Besides 
the three contributions of Eq. (3), there is a further density dependent term 
in quantum-mechanical calculations which results from the symmetrization 
of the wave function and the inclusion of higher terms in the quantum- 
mechanical Boltzmann intergrodifferential equation [52, 53]. For  Bose- 
Einstein statistics this term is small and negative for both t / and  2. As the 
sums of the classical values of B(~ 2)* and B~ 3)* are also negative, whereas the 
experimental B* data of Acton and Kellner [44] between 5 and 20 K as 
well as B~ of Roder [43] at 21 K are positive, it emerges clearly that B(~ 2)* 
and B(9)* have to be calculated quantum-mechanically. In principle, all 
calculations of Be* should be based on the individual H F D  potential of 
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helium including quantum effects. Because these calculations are not 
available, B 2' can be chosen in accordance with the data from Ref. 44, 
whereas B* remains an open question. 

4. THE INFLUENCE OF THE INITIAL DENSITY DEPENDENCE 
O N  L O W - D E N S I T Y  T R A N S P O R T  P R O P E R T I E S  

The zero-density transport coefficients belong to the basic information 
in order to generate the interatomic pair potential or the intermolecular 
potential energy surface because they depend on the interaction of only two 
monomers. The values in the limit of zero density can be determined via 
linear extrapolation of low-density data experimentally obtained. As 
measurements of transport coefficients at low or moderate gas densities 
have been carried out only during the last 10 years in such a way that 
values in the limit of zero density could be obtained at a high quality, 
earlier measurements at low densities have been accepted to give values in 
the limit of zero density. In most cases the influence of the initial density 
dependence has been comparable with the uncertainties of the experimental 
methods. 

In order to demonstrate that the reduced second transport virial coeffi- 
cients B* are of increasing importance for decreasing reduced temperature 
(T* <2), we have calculated the transport coefficients of neon, argon, 
krypton, and xenon at atmospheric pressure via Eqs. (2) and (3) with the 
classical B* for the Lennard-Jones 12-6 potential including the new 
parameter ratios ~ and 0 for n(M D), The relative departures from the ~kt 
zero-density transport coefficients of the corresponding HFD potentials are 
shown in Fig. 3. As the density at atmospheric pressure also increases with 
decreasing temperature, the differences amount to several percent and are 
much larger than the experimental uncertainties. In addition, in the case of 
thermal conductivity the differences for helium following from the experi- 
mental work of Acton and Kellner [441 are shown in Fig. 3. 

Figure 3 makes it clear that, especially at low reduced temperatures, 
comparisons of experimental viscosity coefficients with thermal conduc- 
tivity data or vice versa can be made only via the kinetic theory of dilute 
gases when accounting for the initial density dependence; otherwise large 
systematic differences are to be expected. The initial density dependence is 
also of importance if reference data are to be generated by means of 
correlation and prediction schemes based on the theorem of corresponding 
states. These schemes need data fitting the theoretical background. There- 
fore, low-density values, for which the influence of the initial density 
dependence is very large or negligible, cannot simultaneously be used as 
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Fig. 3. Departures of the viscosity and thermal 
conductivity coefficients at atmospheric pressure from 
their values in the limit of zero density. At/= 
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Thermal conductivity for helium according to Ref. 44. 

primary data in a scheme based on the kinetic theory of dilute gases. The 
contribution of the initial density dependence should be correlated 
separately by the use of the kinetic theory of moderately dense gases due 
to Rainwater and Friend. Thus, experimental data for transport  properties 
should include the density or the pressure in addition to the temperature 
and transport  coefficient itself. 

5. C O N C L U S I O N S  

In order to have reliable primary data for the prediction and correla- 
tion schemes for viscosity and thermal conductivity, it is necessary to make 
a very careful assessment of the experimental material. It is important  to 
find out whether the effect of the initial density dependence of transport  
properties should be accounted for or not. The only practical method is to 
use the transport  properties in the limit of zero density r 0 in the framework 
of one correlation scheme together with the initial-density values #1 from 
another scheme. 
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In the case of gases for which deviations from the classical behavior 
occur due to quantum-mechanical effects, the situation is more complicated, 
because zero-density transport coefficients as well as initial-density 
transport  coefficients are affected. Thus, Eq. (2) should be written as 

#=#O, cl(T)+ At.tO, QM(T)+ #I ,cI (T)p+ A#I ,QM(T)p+ .. .  (19) 

As a consequence we should like to stress that in prediction schemes on the 
basis of the theorem of corresponding states, not only/~O, cl and #l,d, but 
also the quantum corrections A#o,o M and A#I,Q M should be correlated 
separately. 

Arising from this study, it can be seen that there is a need, especially 
at low reduced temperatures, to specify the densities for data in reference 
tables more exactly. Therefore, we intend to present tables for viscosity and 
thermal conductivity coefficients of the noble gases in the limit of zero 
density and at atmospheric pressure in the temperature range from the nor- 
mal boiling point up to 5000 K [54]. 

In addition, this study shows clearly that very accurate measurements 
for viscosity and thermal conductivity are necessary over extended tempera- 
ture ranges in order to fill the blank ranges in the experimental material. 
This should be supplemented by calculations which include the individual 
interatomic potentials, and in some cases an account for quantum- 
mechanical effects must be included. 
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